CR Yamabe constant, CR Yamabe flow and its soliton

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary

We study the minimality of an isometric immersion of a Riemannian manifold into a strictly pseudoconvex CR manifold M endowed with the Webster metric (associated to a fixed contact form on M), hence formulate a version of the CR Yamabe problem for CR manifolds-with-boundary. This is shown to be a nonlinear subelliptic problem of variational origin.

متن کامل

Evolution of Yamabe constant under Ricci flow

In this note under a crucial technical assumption we derive a differential equality of Yamabe constant Y (g (t)) where g (t) is a solution of the Ricci flow on a closed n-manifold. As an application we show that when g (0) is a Yamabe metric at time t = 0 and Rgα n−1 is not a positive eigenvalue of the Laplacian ∆gα for any Yamabe metric gα in the conformal class [g0], then d dt ∣∣ t=0 Y (g (t)...

متن کامل

Second Yamabe constant on Riemannian products

Let (M, g) be a closed Riemannian manifold (m ≥ 2) of positive scalar curvature and (N, h) any closed manifold. We study the asymptotic behaviour of the second Yamabe constant and the second N−Yamabe constant of (M × N, g + th) as t goes to +∞. We obtain that limt→+∞ Y (M ×N, [g+ th]) = 2 2 m+n Y (M ×R, [g+ ge]). If n ≥ 2, we show the existence of nodal solutions of the Yamabe equation on (M × ...

متن کامل

The conformal Yamabe constant of product manifolds

Let (V, g) and (W,h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V × W, g + h) in terms of the conformal Yamabe constants of (V, g) and (W,h).

متن کامل

A combinatorial Yamabe flow in three dimensions

A combinatorial version of Yamabe flow is presented based on Euclidean triangulations coming from sphere packings. The evolution of curvature is then derived and shown to satisfy a heat equation. The Laplacian in the heat equation is shown to be a geometric analogue of the Laplacian of Riemannian geometry, although the maximum principle need not hold. It is then shown that if the flow is nonsin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis

سال: 2020

ISSN: 0362-546X

DOI: 10.1016/j.na.2020.112043